(100+4q^2)/(q)=81

Simple and best practice solution for (100+4q^2)/(q)=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (100+4q^2)/(q)=81 equation:



(100+4q^2)/(q)=81
We move all terms to the left:
(100+4q^2)/(q)-(81)=0
Domain of the equation: q!=0
q∈R
We multiply all the terms by the denominator
(100+4q^2)-81*q=0
We add all the numbers together, and all the variables
(100+4q^2)-81q=0
We get rid of parentheses
4q^2-81q+100=0
a = 4; b = -81; c = +100;
Δ = b2-4ac
Δ = -812-4·4·100
Δ = 4961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4961}=\sqrt{121*41}=\sqrt{121}*\sqrt{41}=11\sqrt{41}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-11\sqrt{41}}{2*4}=\frac{81-11\sqrt{41}}{8} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+11\sqrt{41}}{2*4}=\frac{81+11\sqrt{41}}{8} $

See similar equations:

| 1/4(24x12)=6(x+1/2) | | h=-16(5)^2+80(5)+.1 | | |2x|+1=27 | | 3x+40=2x+5 | | -2x-3x+8=8x5x-12 | | Y+6=-2(x-3) | | w+2/8=7/6 | | g–6g=-15 | | 2√3x^2-8x-58=0 | | 11x^2+12x-144=0 | | 7x-(15)=71 | | k^2=64-2k | | 4-1/5x=-6 | | 3(5p-3)=5(p-3) | | x2+34x=34 | | 0.8-2t=13t | | 10×5/6=n | | x=32+32 | | 8x-17=5x+1=19x+4 | | 10x+5x+10=180 | | 5y+55+50+90=180 | | 24x+5=16x-3 | | 4(6p–3)=26 | | 79+40+16x-3=180 | | 2/(x+1)=6/(5x-1) | | 2x2-17=81 | | |1/2x+5|=8 | | 52(x–2)=34x–1–14x | | 24x+5=79 | | 2x=180°-70° | | 5n/20=n+4/8 | | 9x-2+19x-8=74 |

Equations solver categories